Search results for "Van der Waerden's theorem"
showing 3 items of 3 documents
Fermion Fields and Their Properties
2011
The fundamental building blocks of matter, i.e. quarks and leptons, carry spin 1/2. There are two formally different but in essence equivalent methods of describing particles with spin: The representation theory of the Poincare group, in the framework of Wigner’s classification hypothesis of particles (see e.g. [QP07], Chap. 6), and the Van der Waerden spinor calculus based on SL(2, \(\mathbb{C}\)).
Rank scores tests of multivariate independence
2004
New rank scores test statistics are proposed for testing whether two random vectors are independent. The tests are asymptotically distribution-free for elliptically symmetric marginal distributions. Recently, Gieser and Randles (1997), Taskinen, Kankainen and Oja (2003) and Taskinen, Oja and Randles (2005) introduced and discussed different multivariate extensions of the quadrant test, Kendall's tau and Spearman's rho statistics. In this paper, standardized multivariate spatial signs and the (univariate) ranks of the Mahalanobis-type distances of the observations from the origin are combined to construct ranks cores tests of independence. The limiting distributions of the test statistics ar…
Weak mixing implies weak mixing of higher orders along tempered functions
2009
AbstractWe extend the weakly mixing PET (polynomial ergodic theorem) obtained in Bergelson [Weakly mixing PET. Ergod. Th. & Dynam. Sys.7 (1987), 337–349] to much wider families of functions. Besides throwing new light on the question of ‘how much higher-degree mixing is hidden in weak mixing’, the obtained results also show the way to possible new extensions of the polynomial Szemerédi theorem obtained in Bergelson and Leibman [Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Amer. Math. Soc.9 (1996), 725–753].